
JOURNAL OF COMPUTATIONAL PHYSICS 94. 382402 (199 1)

Numerical Solution of Eigenvalue Problems

for Linear Boundary Value ODES*

S. BRAMLIZY

Departmenr of Mathemarics,

University of SIrathclyde, Glasgow GI lXH, United Kingdom

L. DIECI'

School qf Mathematics,

Georgia Institute qf Technology, Atlanta, Georgia 30332

AND

R. D. RUSSELL*

Departmenr of Mathemarkr & Srarktics,

Simon Fraser University, Burnnby, British Colombia, Canada VSA IS6

Received June 12, 1989; revised January 19, 1990

Interrelationships between several popular approaches for solving eigenvalue problems for

linear boundary value ODES are given. For linear eigenvalue problems, the popular methods

can be interpreted in a common framework. This leads us to propose and justify alternative

strategies. The choice of numerical methods used here is motivated by the desire to solve
eigenvalue problems for stiff ODES. In particular, we consider a one-step global method

(splint collocation) and two initial value methods (Riccati and continuous orthonormaliza-

tion) to solve the Orr-Sommerfeld equation. A comparison of results for these methods, using

various implementation strategies, is given. c’ 1991 Academx Press, Inc.

I. INTRODUCTION

Many methods for computing eigenvalues for boundary value problems for
ordinary differential equations (BVODEs) are presented in the literature, but
frequently little discussion is given of their relative merits. There are of course

* This work was supported in part under NSERC (Canada) Grant A8781.
’ Supported in part under NSF Grant DMS8802762.

* Supported in part under an SERC Fellowship at Imperial College, London.

0021-9991/91 $3.00
Copyright ‘c 1991 by Academic Press. Inc.
All rights of reproduction m any form reserved.

382

NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS 383

several reasons for this. Often the methods are tailor-made for a specific class of

problems (e.g., SturmPLiouville problems [7]). Also, it can be notoriously difficult

to make definitive statements about the relative merits of one method versus

another in a general setting. Nevertheless, we feel that it is possible, and important,
to compare some of the more promising methods at this time.

Here, we limit the setting by concentrating on the problem of computing to high
accuracy a small number of eigenvalues of the Orr-Sommerfeld equation for large

Reynolds number. The fundamental importance of this problem is well known and

more than adequately described elsewhere, e.g., see [171. For OrrSommerfeld-type

problems, eigenfunctions with boundary layers, occurring because of fast fundamen-

tal solution components, must be resolved. The most successful general methods to
date for solving this type of problem in the standard BVODE context are the

so-called global methods collocation and finite differences [4], although initial value

(IV) methods suited for handling the fast components also deserve close considera-

tion. In particular, we feel that a Riccati-type method [131 and continuous

orthonormalization [1, 8, 12, 23, 211 are worth further attention. In this paper, we

report on a spline collocation method, as the representative of (and competitive
with the other) global methods, and these two IV methods.

Even given that these are the methods one wishes to consider, the difficulty of any

comparison would be compounded by the fact that there are several general

strategies for computing eigenvalues and various ways to implement them. While
this makes detailed comparison of questionable value, we believe that our results

are a faithful indication of the potential and feasibility of the methods and of the

different strategies.
We use some fairly highly developed software for spline collocation [6], and in

this respect some of our presentation is similar in spirit to that in [3], where the
capability of collocation software for solving standard BVODEs was reported.
Comparable software is not as yet available for the initial value approaches, so we
use our own unsophisticated implementations of the Riccati and continuous
orthonormalization methods.

An outline of the paper is as follows: In Section 2, the main approaches for com-

puting eigenvalues are delineated and a common framework allowing interpretation
of the interrelationship between them is given. The basic implementations of

numerical methods are discussed in Section 3. Numerical results for the Orr-

Sommerfeld equation are given in Section 4, followed by conclusions in Section 5.

II. THE EIGENVALUE PROBLEM

We consider the following linear eigenvalue problem for a linear BVODE with

separated boundary conditions (BCs):

y’=(E.C(t)+D(t))y, o<t<1 (la)

B, Y(O) = o,, B,y(l)=O,, (lb)

384 BRAMLEY, DIECI, AND RUSSELL

where y(t) = (y,(t), y,(t))’ E C”, 0, and 0, are zero p- and q-vectors, respectively,
B, E Cpxn, B, E CYXN (p + q = n), and 1. E C. Extending the results for nonseparated
BCs is generally straightforward [4]. Also, while we consider the linear eigenvalue
problem in the “standard” form (la), (lb), most of the techniques and conclusions
carry over to the more general problem y’ = A (t, n) y (which allows for a nonlinear
dependence on J.).

For fixed i, if Y(t, ;I) is a (nonsingular) fundamental solution matrix for (1 a),
then y(t, A) = Y(t, 3.) a solves (la), (lb) iff Q(A) a=O, where

QW=[B,‘] y(o.i)+[;J Y(l,lL)=:B,Y(o,;i)+B,Y(l,~). (2)

Thus, i* is an eigenvalue of (la), (lb) iff Q(J*) is singular.
This relationship is at the core of the first type of procedure to calculate L*:

Approach 1. An iterative process is used to determine a root i,* of a function
f(L) whose zeros coincide with points where Q(i) is singular.

For initial value techniques, this is frequently done by essentially finding Y(t, /2)
and using a root finder to solve f(%) :=det(Q(n)) =O. It has been a standard
approach for IV methods and has met with good success [11, 12, 231. Also, eigen-
values of multiplicity greater than one can be treated with this approach. Using
f(L) = rri((Q(A)) instead, where a,((Q(i)) is the smallest singular value of Q(A)
(computed say from the SVD), would offer improved numerical stability and a
reliable estimate of multiplicity. However, f(i) would not undergo a sign change
since CJ] > 0, so the method could need modification (e.g., replace an interval type
root finder by a suitable descent algorithm).

For global methods, the algorithms using Approach 1 consist of globally dis-
cretizing the ODE over [0, I], and then solving a matrix eigenvalue problem
for the full discretization matrix, where one argues that the eigenvalues of the
full system approach those for the original BVODE. Spectral methods, where
approximate eigenfunctions are expressed in terms of a series of orthogonal polyno-
mials or trigonometric functions [26] are in fact of this type. Several spline colloca-
tion and finite difference methods of this type have also been used successfully
[9, 281. Typically, with this approach one computes a large number of approximate
eigenvalues, but high accuracy can be difficult to obtain efficiently. With some spec-
tral methods, including the one we use here, spurious eigenvalues (corresponding to
the discretized system but not to the original differential system) can arise, although
modified versions which eliminate such spurious modes have recently been con-
sidered (e.g., see [16]). In our context, where a small number of eigenvalue
approximations are sought, the next approach seems considerably more efficient
[18] (although spectral methods can nevertheless be put to essential use by
providing accurate initial approximations-see Section 4).

NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS 385

Approach 2. The eigenvalue problem (la), (lb) is expanded to a standard

BVODE for which an eigenvalue and eigenfunction correspond to an isolated

solution, for which this enlarged problem is solved numerically.

This BVODE can be constructed in a variety of ways. One is to add the artificial
ODE 1”’ = 0 and some type of normalization for the eigenfunction [IS]. The

simplest normalization occurs if one component of the eigenfunction is known to be

nonzero at an endpoint. For example, with suitable permutation of variables if
necessary, one could add the auxilliary conditions

2’ = 0, Y,(l)= 1 (lc)

to (la), (lb). Another normalization is to force J: yHy dt = 1 (where yH is the

conjugate transpose y’) by using

3.’ = 0, w(0) = 0

w’ = yHy, M’(l)= 1.
(Id)

In general, it is not easy to find a suitable normalization or extra condition, though
one can often be selected on physical grounds.

In any case, the enlarged ODE system is nonlinear even though the original
eigenvalue problem is a linear one. Also, only implicit use is made of the fact that

j” is constant. Nevertheless, the underlying motivation is to obtain a new problem

for which one can use standard implementations of BVODE methods, including the

robust software for global methods. An initial approximation Lo for the eigenvalue

and y0 for the eigenfunction are now required. If only Lo is available, it can often

be used to define a standard BVODE using (la), (lb), except with some type of

nonhomogeneous BC, e.g., with the normalizing condition of (lc) replacing one of

the BCs in (lb), from which a corresponding y0 can be computed. All of the
standard convergence theory now goes through when the eigenpair (J.*, y*) is an
isolated solution to (la), (1 b), (lc), or (la), (lb), (Id), so A* must be simple.

The next approach which we consider bears much in common with the previous
one, except that the disadvantage of having an artificially enlarged system is over-

come.

Approach 3. The original boundary value problem (la), (lb) is discretized over
[0, 11, and the resulting eigensystem for (,?*, y*) is solved, explicitly treating % as
a parameter.

In other words, the discrete system is augmented by the single variable i.. This
approach is used in [20] with a finite difference discretization method to handle
BVPs with parameters. As we shall see, its solution still requires adding an extra
condition, either implicitly or as an explicit normalization.

These three approaches to the eigenvalue problem have common features, as is
seen by considering Approach 2 in some detail: For simplicity, consider the

386 BRAMLEY, DIECI, AND RUSSELL

BVODE (la), (lb), (Ic) and its solution by the process of quasilinearization. First,
rewrite the problem as

zt .- .- [I [y '= 2. (Wt) + Wt)) Y =: f(t
0 1 z) > > o<t<1

B, Y(O) = op, hY(l)=o,> J’l(l) = 1. (3b)

Given an initial approximation [::I, linearization gives the successive problems

y’=(~iC(t)+~(t))y+(,!-R,)C(t)y,(t)

i.’ = 0

B, Y(O) = op> &Y(l)=%/, L',(l)= 1

(4a)

(4b)

(4c)

to be solved for yi+ , = y, jLi+, = %, for i= 0, 1, 2, This shows how the ODE for
the approximation to y* changes during the quasilinearization process. By writing
(4a) as

Y’ = (3*iC(r) + D(z)) Y + gjtt), (54

where

gi(t)=(A-3”j) CY,(t)t (5b)

the ODE can be interpreted as one with an inhomogeneity involving I.,,, , which
approaches zero as /zi -+ j”*.

It is instructive to see how the update A,+, is determined through the BCs (4~).
For this, let

w :=[;;;:], E:=[
W;“’ cbyq; q := [-“;‘y;],

so (4a), (4b) becomes

w’ = E(t) w + q, o<t<1. (6)

Because of the structure of E, we can consider a fundamental solution for w’ = Ew
of the form

(7)

where Y(~)EC ’ xH is a fundamental solution for (5a) (or (la) with 1” = A,) and w,(t)
is a particular solution to (5a) with gi= Cy,. Then, the solution to (6) is

w=W(t)y+ V(f) L I o > (8)

NUMERICALSoLUTIONOFEIGENVALUEPROBLEMS 387

where v(t) is a particular solution to (5a) with gi = -iiCy;. The BCs (4~)

determine y = [;;I EC” + ‘, where &+, = yz. Specifically (with e, := (1, 0, O)T),

=Ir;i-[“‘+[ff?;;]
or from (2)

[

Y(1) w,(l) Yl 1)1L 1 0; 1 1’2

B, v(O)
B,v(l) -‘2 1 [B, w,(O)

B,w,(l)

e:Y(l)y, +w,(l)g,= 1 -t’,(l)

1 Pa)
Pb)

(with wP = (w,, uj2, M?,,)~, v= (v,, u2, u,,)‘). To summarize, we have the

following type of algorithm arising for Approach 2, solving (4a), (4b), (4~) with

quasilinearization:

TYPE 2 ALGORITHM. Given an initial approximation [:i]. For i = 0, 1, 2,

1. Compute (approximately) a fundamental solution l+‘(t) and particular
solution [“:‘I for (6).

2. Solve (9a), (9b) for y = [;;I and let [::;;I = IV(t) y + [‘t’].

As Li + 3.*, Q(%,) becomes singular, but (9b) provides the extra condition for

solving a well-posed system if (la), (lb), (lc) is, thereby giving [;:;I corresponding
to an eigenfunction so long as rank(Q(l*)) = n - 1. This again highlights the
requirement that %* be a simple eigenvalue.

Thus, we see how quasilinearization for the enlarged system (la), (lb), (lc)

explicitly involves the matrix Q(j”). It can be shown that the common numerical
methods-one step finite difference and spline collocation methods, stabilized
march and multiple shooting, the Riccati method, and continuous orthonor-
malization-can all be interpreted as schemes which determine approximations to
appropriate fundamental solution matrices and particular solutions. For global
methods this interpretation is done by assuming a sufficiently line mesh, where (9a)

is replaced by the full discretization matrix, while for initial value methods the
interpretation is more direct since they are conceptually exact methods (i.e., their
very formulation is done in terms of computing the exact solutions of ODES). What
distinguishes the various methods from each other in practice involves the details
of the process such as how much explicit computation of B’(t) is done and how well
scaled that particular fundamental solution matrix is [19, 43. Regardless, Type 2

388 BRAMLEY, DIECI, AND RUSSELL

algorithms for the various methods are interpretable (at least in the limit) as
approximations to the continuous process giving (8), (9).

It is generally possible to modify these algorithms such that at each iteration one
dispenses with the ODE i.‘= 0 altogether, but still uses the extra normalizing BC
to determine [;;I;]. Th en, the implementation can be classified as Approach 3.
A natural way to do this is as follows: Note that y,(t) := v(t) + yzw,(t) is a par-
ticular solution to (4a). While y,(t) cannot be computed directly because R,, , is
unknown, one can compute a fundamental solution Y(f) and a particular solution

y,(t) for the ODE

Y’ = (W(t) + Qt)) Y + k,C(t) Y,(f), O<f<l, (10)

where the constant kj is assumed for now to be some a priori estimate of li+, -2,.

There is no restriction in theory in assuming that w,(t) and v(t) satisfy the same
BCs, in which case v(t) = -&w,(t) and y,(t) = (A,, , - 3+) w,(t). So requiring that

y,(t) also satisfies the same BCs, y,(t)= ((i.,, , -i,)/ki) y,(t), and (9) can be
expressed in terms of y,(t). In particular, we have the following:

TYPE 3 Algorithm. Suppose that (&, yO) are given. For i= 0, 1, 2,

1. Choose a constant k, and compute a fundamental solution Y(t) and a

particular solution y,(r) for (10).

2. Solve

(lla)

(lib)

for [,::,I and then set yi+i = Y(t)y, +((A,+, -ij)/ki)y,(t).

Since this is mathematically equivalent to an exact Type 2 algorithm, it is
quadratically convergent if the problem is sufficiently smooth and (yO, &) is
sufficiently close to a simple eigenpair (y*, A*). Since the algorithm is independent
of k,, steps 1 and 2 of the algorithm simplify accordingly to:

1’. Compute Y(t) and y,(t) for (10) with ki= 1.

2’. Solve

and let yi+, = Y(t) y, + (ibi+ 1 -ii) y,(r).

These are used shortly in our developing a Type 3 Riccati method below.

NUMERICAL SOLUTION OFEIGENVALUE PROBLEMS 389

It is natural to ask what advantage Approach 2 or 3 has over the traditional

Approach 1 for an IV method such as multiple shooting. Since the majority of work
for any approach involves computing the fundamental solution Y(r) (and thus
essentially the matrix Q(n;)), the extra computing cost for these approaches is not
generally excessive. However, storage can be significantly greater than for
Approach 1 if an eigenfunction approximation is not explicitly needed, since they
still require keeping a global approximation for y,(t) at each iteration (when

integrating (4a) or (10)). On the other hand, computing a global approximation
y,(t) and then solving (4), these more complicated approaches typically have more
robustness than does just using the simple shooting process to force det(Q(i)) = 0.
(Verification that this can be the case is in Section 4.) Finally, note that Approaches
2 and 3 extend easily for the case where the original BVP is nonlinear.

III. NUMERICAL METHODS

If a numerical method is to be competitive for solving BVODEs having both fast
increasing and fast decreasing fundamental solution components, it must be able
to separate, or decouple, these two sets, and to invest its greatest labour
in approximating them in regions where solution layers have the potential of
occurring [4]. Riccati and continuous orthonormalization algorithms are designed
to do this. Standard IV methods like simple shooting and stabilized march,

which involve integrating the unmodified ODE (la), generally do not, although
implementations of them like the shooting codes in NAG and the code SUPORT
[27] can of course be very efficient if fast components are not severe.

The Riccati method for solving general BVODEs which is implemented here is
described in [13, 141, so we just consider how it adapts as a Type 3 algorithm to

solve the enlarged (standard) BVODE (4). (For brevity we do not discuss the re-
imbedding strategy because it turns out to be unnecessary for the numerical results
in Section4.) We use the block notation ,?,C(t)+D(t)=: [z;; ii;], C(r) y,=: [:;I,
y= [i], where A,, EC?~~, ci,z~C’. IfB,=[:], qZ=w then (4)can be rewritten
as

(12a)

Assume that the variables have been ordered so that B,, EC”~” is invert-
ible. (This may result in the normalizing condition z,(1) = 1 involving a different
component after reordering, but it is straightforward to modify the algorithm to

390 BRAMLEY, DIECI, AND RUSSELL

handle such an eventuality.) A Riccati matrix [R 1 r] E Cpx (y+l’ and vector x such
that

q2= CWrl ‘I~ fx (13)

are found by solving the IVPs [13, Eqs. (3.9)-(3.10)]:

CWrl’= C~2,1c21+A22[RIrl- [Rlr] [:T :]- [Rlr] [::I [Rir]

CNWWI = -G’C& lOpI,

x’= [A22-RA,,] x-A,(c,-Rc,)

x(0) = 0.

(144

(14b)

(15a)

(15b)

Thus,

R’=A21+A22R-RA,,-RA,2R (16a)

R(0) = - B,,‘B,, (16b)

r’= [A,, - RA,,] r + (c2 - Rcl) (17a)

r(0) = 0, (17b)

so x(t) = -&r(t) is directly available and integrating (15) unnecessary. From [13,

Eq. (3.11)], after simplifying, we find that

CA,,+A,,Rlz+(L-~,)(A,,(t)r(t)+c,(t)) ,
0 1

(18a)

CB21+BZZR(1)lz(1)+(~-E.r)B22r(1)=0, z,(l)= 1. (18b)

Thus, the Riccati Type 2 algorithm involves solving (14) (17), and then (18) before
the updated solution is formed via (13), but there is the following obvious modilica-

tion:

RICCATI TYPE 3 ALGORITHM. Given an initial approximation (EL,, yO). For
i = 0, 1, 2,

1. Solve the IVPs (16), (17) for R(r) and r(l) on [0, 11.

2. Solve (18b) for [;ZI’:] and integrate the IVP (18a) back for z(t).

3.
Z(f) Let Yi+~(t) := CR(,~~(,)+(;.,+,- i,)r(r)l’

The Riccati Type 1 method would involve computing

.f(n) := det(B,, + &2Wl)) (19)

NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS 391

(or some other measure of singularity of B,, + B,,R(1)). Note thatf(i) = 0 iff Q(i)
is singular, and that with this approach only (16) need be solved for each update
of 3..

The other IV method which we consider is continuous orthonormalization. It has
received considerable recent interest, e.g., see [21] for an extensive analysis and
[29] for a very readable account of the method. However, it is the only method we
consider which has not been extensively compared computationally with other
methods in the BVODE setting (the only comparison of which we are aware is
[15], and there computer memory limitations play a role). One difficulty with a
comparison of either of these IV methods is in deciding from amongst a host of
possible implementations. While we have implemented Riccati and continuous
orthonormalization following [14] and [12, 231, respectively, any choice is to
some extent arbitrary, and other possibilities include those in [S, 21, 221.

Continuous orthonormalization can be adapted as a Type 3 algorithm in a way
similar to what we have done for the Riccati method, but for reasons given in
Section 4, we have only implemented continuous orthonormalization as a Type 1
algorithm. Since this has been done by Davey [121 and Meyer [23], and since our
implementations are very close to theirs, the description here is brief.

Given T,(O)EC”“~ with orthogonal columns and such that

we solve an ODE of the form

T’, = A(t, I,) T, + T, G, o<r<1. (2Ob)

If we require TFT; = 0 (so that (TyT,)‘= 0), then by choosing

G= -TyAT,, (21)

T, spans the same subspace as the columns of the fundamental solution components
Y, of (20) satisfying B, Y,(O)=0 (which ensures that Y,(t), and hence T,(r),
contains the fast increasing components). By trying to preserve T?(t) T,(t) = I in
the computation, excessive growth of the components is prevented. Interestingly,
under the assumption that this orthogonality holds exactly (and some less stringent
ones), the IVP (20) is shown to be stable in [21]. Unfortunately, it is not obvious
how the computation should be arranged in practice, because substituting (21)
directly into (20b) is liable to instability, so in [12, 231,

G= -(TyT,)- ’ TTAT, (22)

is formed and then this is substituted into (20b). If TYT, = D(Z- B), where - DB
is the (computed) off-diagonal elements, then solving the Orr-Sommerfeld equation
Meyer [23] successfully uses the substitution

(T;T,)--’ = Dm ’ (23 1

392 BRAMLEY, DIECI, AND RUSSELL

in (22), although in other applications he uses (I+ B) D-’ [24]. Regardless of how
T, is computed, the overall goal is to iterate on 1. until det(B, T,(1)) = 0. Davey and
Meyer describe different methods for computing the eigenfunction y*(t) once an
eigenvalue A* has been determined, and both are used in Section 4.

The global method used here is spline collocation. For this, rather highly
developed software is available. We use two descendents of COLSYS, called
COLPAR, which is designed to handle parameters directly, and COLCON, which
does automatic continuation in a single parameter [6]. Salient features of the codes
include being designed for high order ODES, providing a global spline solution,
and having sophisticated mesh selection and nonlinear iteration strategies.

We also use a spectral method, for which the collocation solution is expressed as
an expansion of orthogonal functions; the eigenpairs of the discrete linear system
approximate the eigenpairs of the original eigenvalue problem. Arguments for the
suitability of a Chebyshev expansion for solving the Orr-Sommerfeld equation and
a description of the method are given by Orszag [26].

IV. NUMERICAL RESULTS

In this section, we solve the Orr-Sommerfeld equation numerically. This well-
known equation, obtained by reduction after linearizing the Navier-Stokes
equations, has the form

G+(t) = ~Je(t), o<r<1, Wa)

where L:=(-D2+a2)2+ictR,[U(-D2+cr)+U”], M:=-D2+a2 (D:=d/dt),
,! = ictR,c, and R, is the Reynolds number. Our problem setup here follows that in
[12, 231. In particular, we consider Poiseuille flow, with U(t) = 1 - t2, r = I, and
the BCs

f(O) = qY”(0) = 0, $(1)=$75’(1)=0. Pb)

Rather than converting to a first-order system using the obvious choice of variables
(4, &, &‘, d”‘)=, the variables y = (4, d’, 4” - a2#, @“-a2@)T turn out to be com-
putationally better scaled. This gives

Y’(f) = A(t) Y, o<t<1 @a)

Y2W) = Y‘dO) = 02 YI(l)=Y2(l)=o, (25b)

where

A= a := 2iaR Et h:=cr’+iclR,(l-t2-c). (26)

NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS 393

The eigenfunction changes rapidly near t = 1 (e.g., see [121) and a convenient (and
fairly stable) normalization for the eigenfunction turns out to be

y,(O) = d(O) = 1. WC)

Thus, if this normalization is used, the IV methods proceed most naturally from
t = 1 to t = 0 for their initial integration, so in the notation of (14b), the point t = 0
and BC matrix B, correspond to having first implicitly done a change of variables

co, 11 -+ Cl, 01.
Our goal for this problem is to compute the eigenvalue of smallest mode (i.e., the

one with smallest imaginary part, or in some sense the most unstable one). For
completeness sake, these eigenvalues are given for various values of R, in Table I
below. These agree with values for R,= lo4 in [26] and for R, = 10’ to 10’ in [12]

to the number of digits shown in those papers.
We have found that one of the most useful methods for computing eigenvalues

for moderate values of R, for this problem is the spectral method as in [26]. In

particular, using 39 terms in the Chebyshev expansion when R, = lo4 and 49 terms
when R, = 105, our spectral method implementation gives approximations accurate
to at least eight digits. However, for larger values of R, the method encounters dif-
ficulties, and for R,, = lo6 it gives overflow. (Solving problems with larger R, by a
spectral method would probably require a suitably sophisticated approach which
utilizes local basis function expansions in order to provide accurate approximation

of the eigenfunction near t = 1.) In our experience, this spectral method, when
successful, always gave a lowest mode approximation which corresponds to the
actual one. In general, though, it is possible to be misled by spurious computed
modes. This could easily be discovered by relining such approximations with one

of the iterative approaches, or spurious modes could be eliminated by using a
modified spectral method [161.

TABLE I

Smallest Mode Eigenvalue/Initial Approximations

Eigenvalue

R< Real Imaginary

IO4 0.23752649 0.00373967

10-T 0.14592479 - 0.01504204

10h 0.06659252 -0.01398327

10’ 0.03064130 -0.00726049

lox 0.01417134 -0.00351239

10’ 0.00656630 -0.00166002

10’0 0.00304508 -0.00077699
10” 0.00141275 -0.00036208

10” 0.00065558 -0.00016838

581.94.2-10

394 BRAMLEY, DIECI, AND RUSSELL

The implementation of Approach 1 used here is straightforward. For continuous
orthonormalization, our method of integrating (20b), (26) with initial conditions
T,(l) = [:] is as described by Davey [12]. For Meyer’s modification (23), the

change is that G in (22) simplifies to

(27)

where T, = [z, rZ] ECUS*. This improves the efficiency of the eigenvalue
approximation by about 50 %. For the actual numerical integration, the IVPs are
converted to real problems. Unless otherwise stated, the NAG Runge-Kutta-
Merson (nonstiff) code DOZBBF is used, with a mixed absolute/relative error
tolerance. We have found that a multi-step method often performs better, although
the difference is such that it does not qualitatively change the conclusions presented
here. The stiff check of D02BBF predicts that the IVP for T, becomes stiff for
R, > 106, and the corresponding computation time for D02BBF increases rapidly
around this point. However, for our implementation, using the NAG stiff solver
D02BBF dues not qualitatively improve the computation. These results seemingly
confirm the observation in [22], and the remark by Davey [12] that these IVPs
for continuous orthonormalization are nonstiff, although the matter clearly deserves
further analytical study.

After an eigenvalue has been calculated accurately, its corresponding eigenfunc-
tion is found. For this, one writes y(t) = T,(t) a(t) and solves an IVP for a(t) (from
t = 0 to t = 1 if (2%) is used). Davey integrates for both T,(t) and a(t). Since the
integration for T,(t) is unstable in this direction, he suggests storing T,(t) at some
interior points during the solution of (20b), and then on the return integration,
restart the (still unstable) IVPs for T, and a at these points. Meyer [23] also saves
T,(t) values, but after finding y(1) integrates the original (unstable) ODE (la) from
t=l to t=o, projecting the computed solution into span {T,(r)} at these restart
points. We consider both of these two algorithms. For simplicity of implementation,
we use 1000 equally spaced interior restart points, though an efficient implementa-
tion would choose these points adaptively.

Starting values for Jo are four significant digit (rounded) approximations to the
exact eigenvalues. Results are not significantly different for the range of values of R,

considered when using less accurate starting values, as long as convergence still
takes place-generally this requires one to two digit accuracy in 2,. The iterative
method used to compute the eigenvalue with Approach 1 is a complex secant itera-
tion lli+ i = ~i-f(n,)/(f(~,)-f(~i- ,))/(I*,-i,- ,), where f(i)=det(B,T,(O)) and
Ai is obtained by adding f 1 to the fourth significant digit of 1,.

For the Riccati method, the requirement that B,, be nonsingular (where B,

NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS 395

corresponds to the BCs at t = 1) necessitates an initial change of variables, and we
use y = ($” - ~‘4, 4”’ - a2$‘, &$‘)‘. As a result, A = [ii; ;;I with

so the Riccati differential equation (16) for R = [:;I RR;;] becomes R(l)=O,

Rj,, = R,, - R,2(h + aR,,)

R;, = Rzz - R,, - aRf2

R;, = 1 + “*RI, - Rz2(h + aR,,)
(29)

R;. = R,,(a’- aR,,) - R2,

and from B2, + &R(O) = [‘$O) R2;(o’], the desired terminal condition is just

f(i) = det(B,, + B,, R(0)) = R,,(O) = 0. (30)

Again, the system is converted to real IVPs, standard software is used, and complex
secant iteration in 2 used to satisfy (30). Results mainly using the nonstiff solver
D02BBF are given in Table II. For large R,, (29) is stiff [13], as is clearly
demonstrated by the fact that D02EBF becomes much more efficient. Corre-
sponding to the last column of Table II, the Riccati method successfully solves the
eigenvalue problems for R, = lOlo, IO”, and lo’* with normalized times as
described below of 6.48, 9.10, and 9.13, respectively.

After an accurate eigenvalue i * has been computed, the corresponding eigen-
function y* can be found by solving [B,, + B,, R(O)] z(0) = 0 for a nonzero vector

TABLE II

Eigenvalue Calculations-Approach 1

Continuous orthonormalization Riccati method

R, Davey Meyer From t = 1 Fromr=O From I = 0 (stiff solver)

IO4 10.22 6.09 2.58 2.87 4.21

to5 14.63 8.32 4.32 1.62 6.96

10” 40.78 11.29 5.46 6.83 1.51

lo7 67.52 38.15 8.72 11.67 8.6X

10R 12s 40.52 17.94 20.88 9.47

10” 257.46 125.68 41.13 24.81 8.27

396 BRAMLEY, DIECI, AND RUSSELL

satisfying the normalization z,(O) = 1, and integrating the ODE z’ = [A,, + A,2R] z
from t = 0 to t = 1. Then y* = [,“,I. From (25a), (28) the IVP for z is

z,(O) = 1, z2(0) = 0,

-I _ -
-1-,-z

z~=(b+aR,,)z,+aR,2Z~.

For this return integration, we use a very crude implementation, roughly like that
for continuous orthonormalization, viz., R,, and R,, and their derivatives obtained
from (29) are stored at 1000 equally spaced interior points, and their cubic Hermite
interpolants are then used when integrating (3 lb). For large Reynolds number,
storing values of (h + aR,,) and interpolating them directly was found to be less
prone to cancellation errors. For moderate values of R,, computer times are not
markedly less than those for the continuous orthonormalization eigenfunction com-
putations (though roughly 50% less than with Meyer’s method). For larger R,,
adaptively choosing interior points to store R would improve matters significantly,
since the solution to the stiffly stable IVP for R tends to exhibit layers only where
the eigenfunction solutions do (e.g., see [14]).

A summary of the numerical results for these IV methods using Approach 1 is
given in Tables II and III. Tolerances in the IV codes were chosen such that
roughly eight digit accuracy is obtained for the final eigenvalue and eigenfunctions.
This requires a somewhat smaller tolerance for continuous orthonormalization than
for Riccati, at least with the codes used. For example, a tolerance of lo-” is typi-
cally required with continuous orthonormalization, but often only lo-” for Riccati.
This is of course very code dependent, but slight changes in these tolerances do not
qualitatively change the results. The numerical tests have been carried out on various
machines (including runs on PCs with all of the methods), and those reported
here are for double precision computations on an IBM 3081 and DEC 8650;
unit roundoff for both is around lo- 15. The computer times have been normalized
to correspond to the IBM CPU time in seconds (where the normalization factor is

TABLE III

Eigenfunction Calculations-Approach 1

Continuous orthonormalization

Riccati from t = 1,

R, Davey Meyer nonstiff solver

lo4 12.93 7.61 1.98

10’ 17.19 11.13 4.67

lo6 23.94 14.84 7.23

10’ 41.60 25.12 11.76

lo8 96.06 48.90 21.62

lo9 Failed Failed 51.52

NUMERICAL SOLUTION OF EICENVALUE PROBLEMS 397

found by making identical runs on both computers). Of course, what is important
here is the relative difference between the methods, as the implementations are far
from polished but of roughly equal sophistication.

All in all, the Riccati implementation is more efficient than continuous ortho-
normalization, particularly for large Reynolds numbers. Moreover, convergence of
Riccati is generally found to be less sensitive to the accuracy of the initial guess. In
Table IV, the number of iterations and normalized CPU times needed for con-
vergence of the iteration corresponding to the right hand column of Table II are
shown. Riccati with Approach 1 is denoted by RICCI, and (i) and (ii) correspond
to using one and two significant digits, respectively, for the initial eigenvalue
approximations 2, and 2,. Note how computer time increases slowly for increasing
R,, using’the stiff integrator D02EBF with a mixed error tolerance.

We have not implemented any of the IV methods using Approach 2. In [151,
trouble is reported with continuous orthonormalization due to degenerating
accuracy when computing (orthogonal) r,(r) and using (lc), but we have not sub-
stantiated this ourselves. On the basis of its superior performance here and in [22],
we have modified the Riccati method, as described in Section 3, to be used with
Approach 3. Recall that now an eigenvalue and an eigenvector approximation are
computed at each iteration. To begin the iteration given only &, the initial eigen-
function approximation y0 is computed by solving (29) for R and (31) for z; then
y0 = [,“,I. As we expected, it is found to be more robust than Approach I, at least
for moderate R,. Table IV shows the number of iterations required for convergence
for R, between lo4 and 107, with RICC3 denoting this Approach 3 implementation
and (i) and (ii) corresponding to initial guesses for i., with one and two significant
digits, respectively. Computer times are not given, being unduly affected by the
crude implementation of the eigenfunction computation. In fact, results for R, > 10’
are more erratic and probably unreliable as a test of the approach, apparently

TABLE IV

Riccati Eigenvalue Results for Various Initial Guesses

R,.

RICCI (i) RICCI (ii) RICC3 iterations

Time Iterations Time Iterations (i) (ii)

lo4 Diverges 6.28 6 5 4

IO5 16.33 15 8.17 7 8 5

10” 24.99 17 8.37 6 7 5

10’ 16.26 IO 9.35 6 5 5

IOX Diverges 10.02 6

IO9 22.55 12 11.18 6

IO”’ 11.44 6 12.79 6

IO” Diverges 12.76 6

10” 16.59 7 12.03 5

398 BRAMLEY, DIECI, AND RUSSELL

because the implementation prevents obtaining sufficiently accurate eigenfunction
approximations, although this requires more study.

The spline collocation code COLPAR is used with both Approaches 2 and 3 to
solve the OrrSommerfeld equation. Because of its ability to handle high order
ODES, the real and imaginary parts of (24a), (24b) are computed directly using
two fourth-order ODES. For Approach 2, two trivial first-order ODES and BCs
corresponding to the complex ODE j,’ = 0 and BC Q(0) = 1 are added. For
Approach 3, the BC 4(O) = 1 is added to (24a), (24b), and COLPAR treats 1.
directly as a parameter.

COLPAR is essentially the fixed parameter version of the code COLCON [6],
which does continuation in a single parameter. COLCON uses a GausssNewton
iteration in solving the

equations to (32) such that [,“:,I is made
orthogonal to the null space of DF(z,, a,), and some theoretical justification for this
choice is given. Not surprisingly, this approach can be interpreted in our setting in
a natural way. All except the last equation of (11’) can be viewed as a condensed
set of discretization equations (e.g., for collocation, as a condensation of (32)). For
the block bidiagonal matrices of the type produced and solved by COLCON, full
column pivoting in the last block insures that the parameters cci come into play so
that one does not try to invert, in the notation of (II’), Q(A). Obviously, when a
reliable explicit normalization (like (2%) appears to be) is unavailable, as would in
general be the case, then a more careful choice like this used in COLCON is
essential.

For Approaches 2 and 3 we need an initial estimate i., for the eigenvalue and
d,,(t) for the corresponding eigenfunction, and the approximations need to be
accurate for the computed eigenvalue to be the desired one. One way to obtain such
an accurate approximation is to use COLPAR with i, treated as a known constant
and solve the standard linear BVODE (24a), (24b), with the BC 4”‘(O) = 0 replaced
by d(O) = 1, for d,,(f). Thus the eigenvalue estimate is held constant and a
reasonable approximation for the eigenfunction is obtained. If a tolerance TOL is
desired on the final eigenvalue/eigenfunction (A*, d*), then the requested tolerance
for &, is $l?%. Unless stated otherwise, a relative/absolute tolerance of 10 me
is used for the components d and & the initial mesh is the default one of live
equal spaced subintervals, and the spline basis with four collocation points per
subinterval is used.

The numerical results for COLPAR with Approach 2 are not markedly different
than those with Approach 3, except that the former takes more computer time and
storage, due to the larger ODE system. Table V shows, for COLPAR with

NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS 399

TABLE V

Spline Collocation Results

COLPAR COLCON

R, Time Time Steps

IO4 2.30
105 3.80 87.34 14

IOh 3.39 191.2 19

10’ 4.07 288.5 24

IOn 4.93 388.6 24

IO9 4.57 369.2 29

10” 5.42

10” 5.57

10L2 6.83

Approach 2, the corresponding results to those in Tables II and III for the IV
methods. Comparable results have been obtained with Approach 3, which is
typically about 20% faster. The efficiency of the collocation method is apparent,

especially since the computed solution, which increases slowly with R,, involves
both the eigenvalue and eigenfunction computation.

COLPAR is also extremely robust and provides reliable error estimates for the

computed eigenpair. It converges to the smallest mode eigenvalue for R, =
104, lo9 using an initial eigenvalue approximation with at least one significant
digit. Given only the correct order of the smallest mode eigenvalue, it converges to
it somewhat more reliably than RICC3, although the latter frequently still con-
verges (but to another eigenvalue), making comparison slightly more delicate.
While computer times are a measure of the efficiency of the codes, the considerable
imbalance between the level of sophistication of COLPAR and the implementations
of the IV methods makes comparison between these two types of methods

problematic. It is exacerbated further because the IV methods choose a new mesh
each (secant or Newton) iteration, while COLPAR uses a damped Newton
iteration on a given mesh, and then adapts the mesh if necessary in an attempt to
equidistribute the error.

With this in mind, the iteration process for COLPAR for R, = lo4 and lo’, with
A0 having two significant digits accuracy, is examined. We give (a) the number of
mesh points used during the calculation of &,, followed by (b) the number of points
in the mesh sequence chosen during the Newton iteration on oUi, 4,):

R,,= 104. (a) 5, 10, 20; (b) 20, 16, 32

R,= 10’. (a) 5, 10, 20, 16, 32, 16, 32, 16, 32, 64; (b) 64, 35, 70.

Only one Newton iteration, perhaps with quasi-Newton iteration involving a fixed
Jacobian, is done on all of the meshes except the first one in (b), where three and
four iterations are done for R, = lo4 and lo’, respectively. Normalized times are

400 BRAMLEY, DIECI, AND RUSSELL

6.35 and 19.97 s, respectively. In general, since an accurate approximation to an
eigenvalue may be unavailable, we may need to compute (say) the smallest mode
eigenvalue for a range of values of R, (or a bifurcation analysis may be required).
Then, instead of computing (I”*, d*) directly as above, it becomes necessary to use
continuation. COLPAR is essentially the fixed parameter version of the code
COLCON [6], which does continuation in a single parameter.

Using the Reynolds number as the continuation parameter, we have solved (24)
with COLCON for lo4 < R, < lo’“, and a selection of these results are shown in
Table V. The computer times correspond to independent runs solving for R, =
lop ---f lo”+‘, using the (automatically selected) number of continuation steps
shown. COLCON is robust and reliable for this type of problem, although alter-
native codes are available. For example, Ache [2] recently used the BVP code
PASVAR and continuation to solve similar eigenvalue problems using Approach 2.
Note from Table V that, despite the powerful adaptive mesh strategy and
sophisticated technique for choosing the continuation step for COLCON, the com-
puter time initially increases significantly with R,, and is fairly large as compared to
that for COLPAR. This is because small changes in R, can still cause significant
movement in the layer regions of the eigenfunction, so in addition to taking
cautious initial continuation steps, relatively small steps are mandatory throughout.
Also, keeping the number of mesh points (a major indicator of computer time) to
a minimum is more difficult than when only solving for a single parameter value,
as COLPAR does.

N.B. For this particular problem, accurate approximations to I,* are readily
obtained for large values of the Reynolds number because both Re(R,) and Im(R,)
essentially vary linearly with log(R,).

V. CONCLUSIONS

The interrelationships between three natural approaches for solving the eigen-
value problem (la), (1 b) have been shown. The technique of Keller, which involves
enlarging the problem as a standard BVODE, has been interpreted in terms of a
simplified strategy explicitly dealing with the eigenvalue A as a parameter (cf.
Approach 3). We have considered, for various approaches, a spline collocation
method and the Riccati and continuous orthonormalization methods. With these
three methods, we have computed the eigenpair of lowest mode for the Orr-
Sommerfeld equation for a wide range of values of the Reynolds number R,. The
collocation method, having the generally most robust implementation, has been
successfully used with relatively inaccurate initial approximations, while typically
the IV methods needed more accurate approximations. The spectral method
cheaply provides such initial approximations for small and moderate values of R,.

The Riccati method performs best of the two IV methods. This is not to say that
implementations of continuous orthonormalization cannot be made still more com-
petitive, only that stability and practical implementation questions remain and that

NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS 401

the performance of our implementation of it was inferior to the corresponding one
for the Riccati method. The potential for stiffness of the IVPs using continuous
orthonormalization needs to be better understood, as the nonlinear equation (20b)
appears considerably more difficult to handle for stiff methods like BDF than the
quadratic nonlinearity of the Riccati method. While no reimbedding was necessary
for the Riccati method for the Orr-Sommerfeld equation, for most problems a
reimbedding strategy does not qualitatively affect the relative performance (see also

C141).
Conclusions about the methods considered here are far from being definitive,

being of course based upon computations for the Orr-Sommerfeld equation. The
implementations we use appear competitive with those used elsewhere for solving
problems of the form (la), (lb), as to our knowledge the Orr-Sommerfeld problem
has been solved here for larger Reynolds numbers than has been published
heretofore. While the computations for extremely large R, are interesting in them-
selves, a major use is to determine the relative robustness of the methods as a
predictive measure of their utility in a variety of contexts. Navier-Stokes computa-
tions for large R, are becoming increasingly important (e.g., see [lo] and, in a dif-
ferent setting, [25]). We feel that the numerics here are indicative of the general
picture as far as how the methods would perform for most difficult eigenvalue
problems.

Our comparison of the spline collocation and Riccati me/hods is at best rudimen-
tary, but comparison of their implementntions is not-COLPAR wins hands down.
It is highly sophisticated software using robust nonlinear iteration and mesh selec-
tion strategies. For the Riccati implementation, we make use of the special form
and properties of the Orr-Sommerfeld problem (for example, in the normalization
and choice of variables, and in the explicit reduction of number of components of
R needed), but the nonlinear iteration, mesh selection, and interpolation are
extremely crude. These factors only partially compensate for each other, but in sum
there is reason to hope that a competitive code based upon the Riccati method is
feasible and should be developed. Nevertheless, consideration should be given to
the presumed advantage of collocation in handling a high-order problem like (24)
directly, as the problem of scaling variables when converting high-order ODES to
first-order systems can need special care for any given problem. Questions such as
the choice of nonlinear iteration scheme and the extra normalizing BC for the par-
ticular methods would need to be examined. Finally, the computational experience
with IV methods has emphasized the need for having IV codes with the facility for
providing global error estimates and continuous solution profiles, aspects which
have received recent, though somewhat belated, attention by IV code developers.

One useful purpose of a robust implementation of an IV method like a Riccati
method would be to supplement a collocation code like COLPAR. Reproducing
numerical results with an entirely different code and method is a time-honoured
way of assuring reasonable reliability of numerical results. But while it is undoub-
tedly worthwhile to investigate other IV and global methods further, it is also
manifestly clear that COLPAR has the capacity to solve very difficult problems.

402 BRAMLEY, DIECI, AND RUSSELL

Many of its adaptive features have been intensively developed and extensively tested
on a wide assortment of problems. Its robustness should be better known, and
more general use made of such software, particularly by the scientists and engineers
whose interest is in the reliable solution to physical problems and not the computa-
tion itself.

REFERENCES

1. A. A. ABRAMOV, U.S.S.R. Comput. Math. and Math. Phys. 1, 617 (1961).

2. G. A. ACHE, SIAM J. Sci. Statist. Comput. 10, 1097 (1989).

3. U. ASCHER, J. Comput. Phys. 34, 401 (1980).

4. U. M. ASCHER, R. M. M. MATTHEIJ. AND R. D. RUSSELL, Numerical Solution of Boundary Value

Problems for Ordinq~ Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1988), p. 135.

5. I. BABUSKA AND V. MAJER, SIAM J. Numer. Anal. 24, 1301 (1987).

6. G. BADER AND P. KUNKEL, SIAM J. Sci. Sfakr. Camput. 10, 72 (1989).

7. P. B. BAILEY, M. K. GORDON, AND L. F. SHAMPINE, ACM Trans. Math. Software 4, 193 (1978).

8. N. S. BAKHVALOV, Numerical Methods (MIR, Moscow, 1977, Russian edition 1975) p. 601.

9. C. DE BOOR AND B. SWARTZ, Math. Comput. 35, 679 (1980).

10. W. W. BOWER, J. T. KEGELMAN, A. PAL, AND G. MEYER, Phys. Fluids 30, 998 (1987).

11. J. S. BRAMLEY AND S. C. R. DENNIS, J. Math. Anal. Appl. 101, 30 (1984).

12. A. DAVEY, J. Compur. Phys. 51, 343 (1983).

13. L. DIECI, M. R. OSBORNE, AND R. D. RUSSELL, SIAM J. Numer. Anul. 25, 1055 (1988).

14. L. D~ECI, M. R. OSBORNE, AND R. D. RUSSELL, SIAM J. Numer. Anal. 25, 1074 (1988).

15. M. EIDENSCHINK, MSc. thesis, Georgia Institute of Technology, 1988 (unpublished).

16. D. R. GARDNER, S. A. TROGDON, AKD R. W. DOUGLASS, J. Comput. Ph.v.7. 80, 137 (1989).

17. I. H. HERRON, SIAM Rel;. 29, 597 (1987).

18. H. B. KELLER, Numerical Solution of Two Point Boundary Value Problems (SIAM, Philadelphia,

1976) p. 45.

19. M. LENT~NI, M. R. OSBORNE. AND R. D. RUSSELL, SIAM J. Namer. Anal. 22, 280 (1985).

20. M. LENTINI AND V. PEREYRA, Mat. Apl. Comput. 2 (1983).

21. P. M. VAN LOON, Continuous Decoupling Transformations ,for Linear Boundary Value Problems

(Math. Centrum, Amsterdam, 1988), p. 45.

22. P. M. VAN LOON AND R. M. M. MATTHEIJ, Ausrral. Math. Sot. Ser. B 29, 282 (1988).

23. G. H. MEYER, J. Comput. Phys. 62, 248 (1986).

24. G. H. MEYER, School of Math., Georgia Inst. of Tech., Atlanta, GA, private communication (1989).

25. B. MULLER AND A. RIZ~I, In!. J. Numer. Methods Fluids 9, 943 (1989).

26. S. A. ORSZAG, J. Fluid Mech. 50, 689 (1971).

27. M. R. SCOTT AND H. A. WATTS, SIAM J. Numer. Anal. 14, 40 (1977).

28. A. G. SLEPTSOV, “The Spline-Collocation and the Spline-Galerkin Methods for Orr-Sommerfeld

Problem,” in Numerical Boundary Value ODES, edited by U. Ascher and R. D. Russell (Birkhauser,

Boston. 1985), p. 137.

29. K. WRIGHT, Univ. Newcastle upon Tyne Computing Lab Tech. Rep. 257, 1988 (unpublished).

