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Interrelationships between several popular approaches for solving eigenvalue problems for 

linear boundary value ODES are given. For linear eigenvalue problems, the popular methods 

can be interpreted in a common framework. This leads us to propose and justify alternative 

strategies. The choice of numerical methods used here is motivated by the desire to solve 
eigenvalue problems for stiff ODES. In particular, we consider a one-step global method 

(splint collocation) and two initial value methods (Riccati and continuous orthonormaliza- 

tion) to solve the Orr-Sommerfeld equation. A comparison of results for these methods, using 

various implementation strategies, is given. c’ 1991 Academx Press, Inc. 

I. INTRODUCTION 

Many methods for computing eigenvalues for boundary value problems for 
ordinary differential equations (BVODEs) are presented in the literature, but 
frequently little discussion is given of their relative merits. There are of course 
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several reasons for this. Often the methods are tailor-made for a specific class of 

problems (e.g., SturmPLiouville problems [7]). Also, it can be notoriously difficult 

to make definitive statements about the relative merits of one method versus 

another in a general setting. Nevertheless, we feel that it is possible, and important, 
to compare some of the more promising methods at this time. 

Here, we limit the setting by concentrating on the problem of computing to high 
accuracy a small number of eigenvalues of the Orr-Sommerfeld equation for large 

Reynolds number. The fundamental importance of this problem is well known and 

more than adequately described elsewhere, e.g., see [ 171. For OrrSommerfeld-type 

problems, eigenfunctions with boundary layers, occurring because of fast fundamen- 

tal solution components, must be resolved. The most successful general methods to 
date for solving this type of problem in the standard BVODE context are the 

so-called global methods collocation and finite differences [4], although initial value 

(IV) methods suited for handling the fast components also deserve close considera- 

tion. In particular, we feel that a Riccati-type method [ 131 and continuous 

orthonormalization [ 1, 8, 12, 23, 211 are worth further attention. In this paper, we 

report on a spline collocation method, as the representative of (and competitive 
with the other) global methods, and these two IV methods. 

Even given that these are the methods one wishes to consider, the difficulty of any 

comparison would be compounded by the fact that there are several general 

strategies for computing eigenvalues and various ways to implement them. While 
this makes detailed comparison of questionable value, we believe that our results 

are a faithful indication of the potential and feasibility of the methods and of the 

different strategies. 
We use some fairly highly developed software for spline collocation [6], and in 

this respect some of our presentation is similar in spirit to that in [3], where the 
capability of collocation software for solving standard BVODEs was reported. 
Comparable software is not as yet available for the initial value approaches, so we 
use our own unsophisticated implementations of the Riccati and continuous 
orthonormalization methods. 

An outline of the paper is as follows: In Section 2, the main approaches for com- 

puting eigenvalues are delineated and a common framework allowing interpretation 
of the interrelationship between them is given. The basic implementations of 

numerical methods are discussed in Section 3. Numerical results for the Orr- 

Sommerfeld equation are given in Section 4, followed by conclusions in Section 5. 

II. THE EIGENVALUE PROBLEM 

We consider the following linear eigenvalue problem for a linear BVODE with 

separated boundary conditions (BCs): 

y’=(E.C(t)+D(t))y, o<t<1 (la) 

B, Y(O) = o,, B,y(l)=O,, (lb) 
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where y(t) = (y,(t), . . . . y,(t))’ E C”, 0, and 0, are zero p- and q-vectors, respectively, 
B, E Cpxn, B, E CYXN (p + q = n), and 1. E C. Extending the results for nonseparated 
BCs is generally straightforward [4]. Also, while we consider the linear eigenvalue 
problem in the “standard” form (la), (lb), most of the techniques and conclusions 
carry over to the more general problem y’ = A (t, n) y (which allows for a nonlinear 
dependence on J.). 

For fixed i, if Y(t, ;I) is a (nonsingular) fundamental solution matrix for (1 a), 
then y(t, A) = Y(t, 3.) a solves (la), (lb) iff Q(A) a=O, where 

QW=[B,‘] y(o.i)+[;J Y(l,lL)=:B,Y(o,;i)+B,Y(l,~). (2) 

Thus, i* is an eigenvalue of (la), (lb) iff Q(J*) is singular. 
This relationship is at the core of the first type of procedure to calculate L*: 

Approach 1. An iterative process is used to determine a root i,* of a function 
f(L) whose zeros coincide with points where Q(i) is singular. 

For initial value techniques, this is frequently done by essentially finding Y(t, /2) 
and using a root finder to solve f(%) :=det(Q(n)) =O. It has been a standard 
approach for IV methods and has met with good success [ 11, 12, 231. Also, eigen- 
values of multiplicity greater than one can be treated with this approach. Using 
f(L) = rri((Q(A)) instead, where a,((Q(i)) is the smallest singular value of Q(A) 
(computed say from the SVD), would offer improved numerical stability and a 
reliable estimate of multiplicity. However, f(i) would not undergo a sign change 
since CJ] > 0, so the method could need modification (e.g., replace an interval type 
root finder by a suitable descent algorithm). 

For global methods, the algorithms using Approach 1 consist of globally dis- 
cretizing the ODE over [0, I], and then solving a matrix eigenvalue problem 
for the full discretization matrix, where one argues that the eigenvalues of the 
full system approach those for the original BVODE. Spectral methods, where 
approximate eigenfunctions are expressed in terms of a series of orthogonal polyno- 
mials or trigonometric functions [26] are in fact of this type. Several spline colloca- 
tion and finite difference methods of this type have also been used successfully 
[9, 281. Typically, with this approach one computes a large number of approximate 
eigenvalues, but high accuracy can be difficult to obtain efficiently. With some spec- 
tral methods, including the one we use here, spurious eigenvalues (corresponding to 
the discretized system but not to the original differential system) can arise, although 
modified versions which eliminate such spurious modes have recently been con- 
sidered (e.g., see [16]). In our context, where a small number of eigenvalue 
approximations are sought, the next approach seems considerably more efficient 
[18] (although spectral methods can nevertheless be put to essential use by 
providing accurate initial approximations-see Section 4). 
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Approach 2. The eigenvalue problem (la), (lb) is expanded to a standard 

BVODE for which an eigenvalue and eigenfunction correspond to an isolated 

solution, for which this enlarged problem is solved numerically. 

This BVODE can be constructed in a variety of ways. One is to add the artificial 
ODE 1”’ = 0 and some type of normalization for the eigenfunction [IS]. The 

simplest normalization occurs if one component of the eigenfunction is known to be 

nonzero at an endpoint. For example, with suitable permutation of variables if 
necessary, one could add the auxilliary conditions 

2’ = 0, Y,(l)= 1 (lc) 

to (la), (lb). Another normalization is to force J: yHy dt = 1 (where yH is the 

conjugate transpose y’) by using 

3.’ = 0, w(0) = 0 

w’ = yHy, M’(l)= 1. 
(Id) 

In general, it is not easy to find a suitable normalization or extra condition, though 
one can often be selected on physical grounds. 

In any case, the enlarged ODE system is nonlinear even though the original 
eigenvalue problem is a linear one. Also, only implicit use is made of the fact that 

j” is constant. Nevertheless, the underlying motivation is to obtain a new problem 

for which one can use standard implementations of BVODE methods, including the 

robust software for global methods. An initial approximation Lo for the eigenvalue 

and y0 for the eigenfunction are now required. If only Lo is available, it can often 

be used to define a standard BVODE using (la), (lb), except with some type of 

nonhomogeneous BC, e.g., with the normalizing condition of (lc) replacing one of 

the BCs in (lb), from which a corresponding y0 can be computed. All of the 
standard convergence theory now goes through when the eigenpair (J.*, y*) is an 
isolated solution to (la), (1 b), (lc), or (la), (lb), (Id), so A* must be simple. 

The next approach which we consider bears much in common with the previous 
one, except that the disadvantage of having an artificially enlarged system is over- 

come. 

Approach 3. The original boundary value problem (la), (lb) is discretized over 
[0, 11, and the resulting eigensystem for (,?*, y*) is solved, explicitly treating % as 
a parameter. 

In other words, the discrete system is augmented by the single variable i.. This 
approach is used in [20] with a finite difference discretization method to handle 
BVPs with parameters. As we shall see, its solution still requires adding an extra 
condition, either implicitly or as an explicit normalization. 

These three approaches to the eigenvalue problem have common features, as is 
seen by considering Approach 2 in some detail: For simplicity, consider the 
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BVODE (la), (lb), (Ic) and its solution by the process of quasilinearization. First, 
rewrite the problem as 

zt .- .- [I [ y '= 2. (Wt) + Wt)) Y =: f(t 
0 1 z) > > o<t<1 

B, Y(O) = op, hY(l)=o,> J’l(l) = 1. (3b) 

Given an initial approximation [::I, linearization gives the successive problems 

y’=(~iC(t)+~(t))y+(,!-R,)C(t)y,(t) 

i.’ = 0 

B, Y(O) = op> &Y(l)=%/, L',(l)= 1 

(4a) 

(4b) 

(4c) 

to be solved for yi+ , = y, jLi+, = %, for i= 0, 1, 2, . . . . This shows how the ODE for 
the approximation to y* changes during the quasilinearization process. By writing 
(4a) as 

Y’ = (3*iC(r) + D(z)) Y + gjtt), (54 

where 

gi(t)=(A-3”j) CY,(t)t (5b) 

the ODE can be interpreted as one with an inhomogeneity involving I.,,, , which 
approaches zero as /zi -+ j”*. 

It is instructive to see how the update A,+, is determined through the BCs (4~). 
For this, let 

w :=[;;;:], E:=[ 
W;“’ cbyq; q := [ -“;‘y;], 

so (4a), (4b) becomes 

w’ = E(t) w + q, o<t<1. (6) 

Because of the structure of E, we can consider a fundamental solution for w’ = Ew 
of the form 

(7) 

where Y(~)EC ’ xH is a fundamental solution for (5a) (or (la) with 1” = A,) and w,(t) 
is a particular solution to (5a) with gi= Cy,. Then, the solution to (6) is 

w=W(t)y+ V(f) L I o > (8) 
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where v(t) is a particular solution to (5a) with gi = -iiCy;. The BCs (4~) 

determine y = [;;I EC” + ‘, where &+, = yz. Specifically (with e, := (1, 0, . . . . O)T), 

=Ir;i-[“‘+[ff?;;] 
or from (2) 

[ 

Y(1) w,(l) Yl 1)1L 1 0; 1 1’2 

B, v(O) 
B,v(l) -‘2 1 [ B, w,(O) 

B,w,(l) 

e:Y(l)y, +w,(l)g,= 1 -t’,(l) 

1 Pa) 
Pb) 

(with wP = (w,, uj2, . . . . M?,,)~, v= (v,, u2, . . . . u,,)‘). To summarize, we have the 

following type of algorithm arising for Approach 2, solving (4a), (4b), (4~) with 

quasilinearization: 

TYPE 2 ALGORITHM. Given an initial approximation [ :i]. For i = 0, 1, 2, . . . . 

1. Compute (approximately) a fundamental solution l+‘(t) and particular 
solution [“:‘I for (6). 

2. Solve (9a), (9b) for y = [;;I and let [::;;I = IV(t) y + [‘t’]. 

As Li + 3.*, Q(%,) becomes singular, but (9b) provides the extra condition for 

solving a well-posed system if (la), (lb), (lc) is, thereby giving [;:;I corresponding 
to an eigenfunction so long as rank(Q(l*)) = n - 1. This again highlights the 
requirement that %* be a simple eigenvalue. 

Thus, we see how quasilinearization for the enlarged system (la), (lb), (lc) 

explicitly involves the matrix Q(j”). It can be shown that the common numerical 
methods-one step finite difference and spline collocation methods, stabilized 
march and multiple shooting, the Riccati method, and continuous orthonor- 
malization-can all be interpreted as schemes which determine approximations to 
appropriate fundamental solution matrices and particular solutions. For global 
methods this interpretation is done by assuming a sufficiently line mesh, where (9a) 

is replaced by the full discretization matrix, while for initial value methods the 
interpretation is more direct since they are conceptually exact methods (i.e., their 
very formulation is done in terms of computing the exact solutions of ODES). What 
distinguishes the various methods from each other in practice involves the details 
of the process such as how much explicit computation of B’(t) is done and how well 
scaled that particular fundamental solution matrix is [ 19, 43. Regardless, Type 2 
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algorithms for the various methods are interpretable (at least in the limit) as 
approximations to the continuous process giving (8), (9). 

It is generally possible to modify these algorithms such that at each iteration one 
dispenses with the ODE i.‘= 0 altogether, but still uses the extra normalizing BC 
to determine [;;I;]. Th en, the implementation can be classified as Approach 3. 
A natural way to do this is as follows: Note that y,(t) := v(t) + yzw,(t) is a par- 
ticular solution to (4a). While y,(t) cannot be computed directly because R,, , is 
unknown, one can compute a fundamental solution Y(f) and a particular solution 

y,(t) for the ODE 

Y’ = (W(t) + Qt)) Y + k,C(t) Y,(f), O<f<l, (10) 

where the constant kj is assumed for now to be some a priori estimate of li+, -2,. 

There is no restriction in theory in assuming that w,(t) and v(t) satisfy the same 
BCs, in which case v(t) = -&w,(t) and y,(t) = (A,, , - 3+) w,(t). So requiring that 

y,(t) also satisfies the same BCs, y,(t)= ((i.,, , -i,)/ki) y,(t), and (9) can be 
expressed in terms of y,(t). In particular, we have the following: 

TYPE 3 Algorithm. Suppose that (&, yO) are given. For i= 0, 1, 2, . . . . 

1. Choose a constant k, and compute a fundamental solution Y(t) and a 

particular solution y,(r) for (10). 

2. Solve 

(lla) 

(lib) 

for [,::,I and then set yi+i = Y(t)y, +((A,+, -ij)/ki)y,(t). 

Since this is mathematically equivalent to an exact Type 2 algorithm, it is 
quadratically convergent if the problem is sufficiently smooth and (yO, &) is 
sufficiently close to a simple eigenpair (y*, A*). Since the algorithm is independent 
of k,, steps 1 and 2 of the algorithm simplify accordingly to: 

1’. Compute Y(t) and y,(t) for (10) with ki= 1. 

2’. Solve 

and let yi+, = Y(t) y, + (ibi+ 1 -ii) y,(r). 

These are used shortly in our developing a Type 3 Riccati method below. 
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It is natural to ask what advantage Approach 2 or 3 has over the traditional 

Approach 1 for an IV method such as multiple shooting. Since the majority of work 
for any approach involves computing the fundamental solution Y(r) (and thus 
essentially the matrix Q(n;)), the extra computing cost for these approaches is not 
generally excessive. However, storage can be significantly greater than for 
Approach 1 if an eigenfunction approximation is not explicitly needed, since they 
still require keeping a global approximation for y,(t) at each iteration (when 

integrating (4a) or (10)). On the other hand, computing a global approximation 
y,(t) and then solving (4), these more complicated approaches typically have more 
robustness than does just using the simple shooting process to force det(Q(i)) = 0. 
(Verification that this can be the case is in Section 4.) Finally, note that Approaches 
2 and 3 extend easily for the case where the original BVP is nonlinear. 

III. NUMERICAL METHODS 

If a numerical method is to be competitive for solving BVODEs having both fast 
increasing and fast decreasing fundamental solution components, it must be able 
to separate, or decouple, these two sets, and to invest its greatest labour 
in approximating them in regions where solution layers have the potential of 
occurring [4]. Riccati and continuous orthonormalization algorithms are designed 
to do this. Standard IV methods like simple shooting and stabilized march, 

which involve integrating the unmodified ODE (la), generally do not, although 
implementations of them like the shooting codes in NAG and the code SUPORT 
[27] can of course be very efficient if fast components are not severe. 

The Riccati method for solving general BVODEs which is implemented here is 
described in [ 13, 141, so we just consider how it adapts as a Type 3 algorithm to 

solve the enlarged (standard) BVODE (4). (For brevity we do not discuss the re- 
imbedding strategy because it turns out to be unnecessary for the numerical results 
in Section4.) We use the block notation ,?,C(t)+D(t)=: [z;; ii;], C(r) y,=: [:;I, 
y= [i], where A,, EC?~~, ci,z~C’. IfB,=[:], qZ=w then (4)can be rewritten 
as 

(12a) 

Assume that the variables have been ordered so that B,, EC”~” is invert- 
ible. (This may result in the normalizing condition z,( 1) = 1 involving a different 
component after reordering, but it is straightforward to modify the algorithm to 



390 BRAMLEY, DIECI, AND RUSSELL 

handle such an eventuality.) A Riccati matrix [R 1 r] E Cpx (y+l’ and vector x such 
that 

q2= CWrl ‘I~ fx (13) 

are found by solving the IVPs [ 13, Eqs. (3.9)-(3.10)]: 

CWrl’= C~2,1c21+A22[RIrl- [Rlr] [:T :]- [Rlr] [::I [Rir] 

CNWWI = -G’C& lOpI, 

x’= [A22-RA,,] x-A,(c,-Rc,) 

x(0) = 0. 

(144 

(14b) 

(15a) 

(15b) 

Thus, 

R’=A21+A22R-RA,,-RA,2R (16a) 

R(0) = - B,,‘B,, (16b) 

r’= [A,, - RA,,] r + (c2 - Rcl) (17a) 

r(0) = 0, (17b) 

so x(t) = -&r(t) is directly available and integrating (15) unnecessary. From [ 13, 

Eq. (3.11)], after simplifying, we find that 

CA,,+A,,Rlz+(L-~,)(A,,(t)r(t)+c,(t)) , 
0 1 

(18a) 

CB21+BZZR(1)lz(1)+(~-E.r)B22r(1)=0, z,(l)= 1. (18b) 

Thus, the Riccati Type 2 algorithm involves solving (14) (17), and then (18) before 
the updated solution is formed via (13), but there is the following obvious modilica- 

tion: 

RICCATI TYPE 3 ALGORITHM. Given an initial approximation (EL,, yO). For 
i = 0, 1, 2, . . . . 

1. Solve the IVPs (16), (17) for R(r) and r(l) on [0, 11. 

2. Solve (18b) for [;ZI’:] and integrate the IVP (18a) back for z(t). 

3. 
Z(f) Let Yi+~(t) := CR(,~~(,)+(;.,+,- i,)r(r)l’ 

The Riccati Type 1 method would involve computing 

.f(n) := det(B,, + &2Wl)) (19) 
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(or some other measure of singularity of B,, + B,,R( 1)). Note thatf(i) = 0 iff Q(i) 
is singular, and that with this approach only (16) need be solved for each update 
of 3.. 

The other IV method which we consider is continuous orthonormalization. It has 
received considerable recent interest, e.g., see [21] for an extensive analysis and 
[29] for a very readable account of the method. However, it is the only method we 
consider which has not been extensively compared computationally with other 
methods in the BVODE setting (the only comparison of which we are aware is 
[15], and there computer memory limitations play a role). One difficulty with a 
comparison of either of these IV methods is in deciding from amongst a host of 
possible implementations. While we have implemented Riccati and continuous 
orthonormalization following [14] and [ 12, 231, respectively, any choice is to 
some extent arbitrary, and other possibilities include those in [S, 21, 221. 

Continuous orthonormalization can be adapted as a Type 3 algorithm in a way 
similar to what we have done for the Riccati method, but for reasons given in 
Section 4, we have only implemented continuous orthonormalization as a Type 1 
algorithm. Since this has been done by Davey [ 121 and Meyer [23], and since our 
implementations are very close to theirs, the description here is brief. 

Given T,(O)EC”“~ with orthogonal columns and such that 

we solve an ODE of the form 

T’, = A(t, I,) T, + T, G, o<r<1. (2Ob) 

If we require TFT; = 0 (so that (TyT,)‘= 0), then by choosing 

G= -TyAT,, (21) 

T, spans the same subspace as the columns of the fundamental solution components 
Y, of (20) satisfying B, Y,(O)=0 (which ensures that Y,(t), and hence T,(r), 
contains the fast increasing components). By trying to preserve T?(t) T,(t) = I in 
the computation, excessive growth of the components is prevented. Interestingly, 
under the assumption that this orthogonality holds exactly (and some less stringent 
ones), the IVP (20) is shown to be stable in [21]. Unfortunately, it is not obvious 
how the computation should be arranged in practice, because substituting (21) 
directly into (20b) is liable to instability, so in [12, 231, 

G= -(TyT,)- ’ TTAT, (22) 

is formed and then this is substituted into (20b). If TYT, = D(Z- B), where - DB 
is the (computed) off-diagonal elements, then solving the Orr-Sommerfeld equation 
Meyer [23] successfully uses the substitution 

(T;T,)--’ = Dm ’ (23 1 
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in (22), although in other applications he uses (I+ B) D-’ [24]. Regardless of how 
T, is computed, the overall goal is to iterate on 1. until det(B, T,( 1)) = 0. Davey and 
Meyer describe different methods for computing the eigenfunction y*(t) once an 
eigenvalue A* has been determined, and both are used in Section 4. 

The global method used here is spline collocation. For this, rather highly 
developed software is available. We use two descendents of COLSYS, called 
COLPAR, which is designed to handle parameters directly, and COLCON, which 
does automatic continuation in a single parameter [6]. Salient features of the codes 
include being designed for high order ODES, providing a global spline solution, 
and having sophisticated mesh selection and nonlinear iteration strategies. 

We also use a spectral method, for which the collocation solution is expressed as 
an expansion of orthogonal functions; the eigenpairs of the discrete linear system 
approximate the eigenpairs of the original eigenvalue problem. Arguments for the 
suitability of a Chebyshev expansion for solving the Orr-Sommerfeld equation and 
a description of the method are given by Orszag [26]. 

IV. NUMERICAL RESULTS 

In this section, we solve the Orr-Sommerfeld equation numerically. This well- 
known equation, obtained by reduction after linearizing the Navier-Stokes 
equations, has the form 

G+(t) = ~Je(t), o<r<1, Wa) 

where L:=(-D2+a2)2+ictR,[U(-D2+cr)+U”], M:=-D2+a2 (D:=d/dt), 
,! = ictR,c, and R, is the Reynolds number. Our problem setup here follows that in 
[ 12, 231. In particular, we consider Poiseuille flow, with U(t) = 1 - t2, r = I, and 
the BCs 

f(O) = qY”(0) = 0, $(1)=$75’(1)=0. Pb) 

Rather than converting to a first-order system using the obvious choice of variables 
(4, &, &‘, d”‘)=, the variables y = (4, d’, 4” - a2#, @“-a2@)T turn out to be com- 
putationally better scaled. This gives 

Y’(f) = A(t) Y, o<t<1 @a) 

Y2W) = Y‘dO) = 02 YI(l)=Y2(l)=o, (25b) 

where 

A= a := 2iaR Et h:=cr’+iclR,(l-t2-c). (26) 
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The eigenfunction changes rapidly near t = 1 (e.g., see [ 121) and a convenient (and 
fairly stable) normalization for the eigenfunction turns out to be 

y,(O) = d(O) = 1. WC) 

Thus, if this normalization is used, the IV methods proceed most naturally from 
t = 1 to t = 0 for their initial integration, so in the notation of (14b), the point t = 0 
and BC matrix B, correspond to having first implicitly done a change of variables 

co, 11 -+ Cl, 01. 
Our goal for this problem is to compute the eigenvalue of smallest mode (i.e., the 

one with smallest imaginary part, or in some sense the most unstable one). For 
completeness sake, these eigenvalues are given for various values of R, in Table I 
below. These agree with values for R,= lo4 in [26] and for R, = 10’ to 10’ in [12] 

to the number of digits shown in those papers. 
We have found that one of the most useful methods for computing eigenvalues 

for moderate values of R, for this problem is the spectral method as in [26]. In 

particular, using 39 terms in the Chebyshev expansion when R, = lo4 and 49 terms 
when R, = 105, our spectral method implementation gives approximations accurate 
to at least eight digits. However, for larger values of R, the method encounters dif- 
ficulties, and for R,, = lo6 it gives overflow. (Solving problems with larger R, by a 
spectral method would probably require a suitably sophisticated approach which 
utilizes local basis function expansions in order to provide accurate approximation 

of the eigenfunction near t = 1.) In our experience, this spectral method, when 
successful, always gave a lowest mode approximation which corresponds to the 
actual one. In general, though, it is possible to be misled by spurious computed 
modes. This could easily be discovered by relining such approximations with one 

of the iterative approaches, or spurious modes could be eliminated by using a 
modified spectral method [ 161. 

TABLE I 

Smallest Mode Eigenvalue/Initial Approximations 

Eigenvalue 

R< Real Imaginary 

IO4 0.23752649 0.00373967 

10-T 0.14592479 - 0.01504204 

10h 0.06659252 -0.01398327 

10’ 0.03064130 -0.00726049 

lox 0.01417134 -0.00351239 

10’ 0.00656630 -0.00166002 

10’0 0.00304508 -0.00077699 
10” 0.00141275 -0.00036208 

10” 0.00065558 -0.00016838 

581.94.2-10 
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The implementation of Approach 1 used here is straightforward. For continuous 
orthonormalization, our method of integrating (20b), (26) with initial conditions 
T,(l) = [ :] is as described by Davey [12]. For Meyer’s modification (23), the 

change is that G in (22) simplifies to 

(27) 

where T, = [z, rZ] ECUS*. This improves the efficiency of the eigenvalue 
approximation by about 50 %. For the actual numerical integration, the IVPs are 
converted to real problems. Unless otherwise stated, the NAG Runge-Kutta- 
Merson (nonstiff) code DOZBBF is used, with a mixed absolute/relative error 
tolerance. We have found that a multi-step method often performs better, although 
the difference is such that it does not qualitatively change the conclusions presented 
here. The stiff check of D02BBF predicts that the IVP for T, becomes stiff for 
R, > 106, and the corresponding computation time for D02BBF increases rapidly 
around this point. However, for our implementation, using the NAG stiff solver 
D02BBF dues not qualitatively improve the computation. These results seemingly 
confirm the observation in [22], and the remark by Davey [12] that these IVPs 
for continuous orthonormalization are nonstiff, although the matter clearly deserves 
further analytical study. 

After an eigenvalue has been calculated accurately, its corresponding eigenfunc- 
tion is found. For this, one writes y(t) = T,(t) a(t) and solves an IVP for a(t) (from 
t = 0 to t = 1 if (2%) is used). Davey integrates for both T,(t) and a(t). Since the 
integration for T,(t) is unstable in this direction, he suggests storing T,(t) at some 
interior points during the solution of (20b), and then on the return integration, 
restart the (still unstable) IVPs for T, and a at these points. Meyer [23] also saves 
T,(t) values, but after finding y( 1) integrates the original (unstable) ODE (la) from 
t=l to t=o, projecting the computed solution into span {T,(r)} at these restart 
points. We consider both of these two algorithms. For simplicity of implementation, 
we use 1000 equally spaced interior restart points, though an efficient implementa- 
tion would choose these points adaptively. 

Starting values for Jo are four significant digit (rounded) approximations to the 
exact eigenvalues. Results are not significantly different for the range of values of R, 

considered when using less accurate starting values, as long as convergence still 
takes place-generally this requires one to two digit accuracy in 2,. The iterative 
method used to compute the eigenvalue with Approach 1 is a complex secant itera- 
tion lli+ i = ~i-f(n,)/(f(~,)-f(~i- ,))/(I*,-i,- ,), where f(i)=det(B,T,(O)) and 
Ai is obtained by adding f 1 to the fourth significant digit of 1,. 

For the Riccati method, the requirement that B,, be nonsingular (where B, 
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corresponds to the BCs at t = 1) necessitates an initial change of variables, and we 
use y = ($” - ~‘4, 4”’ - a2$‘, &$‘)‘. As a result, A = [ii; ;;I with 

so the Riccati differential equation (16) for R = [ :;I RR;;] becomes R( l)=O, 

Rj,, = R,, - R,2(h + aR,,) 

R;, = Rzz - R,, - aRf2 

R;, = 1 + “*RI, - Rz2(h + aR,,) 
(29) 

R;. = R,,(a’- aR,,) - R2, 

and from B2, + &R(O) = [ ‘$O) R2;(o’], the desired terminal condition is just 

f(i) = det(B,, + B,, R(0)) = R,,(O) = 0. (30) 

Again, the system is converted to real IVPs, standard software is used, and complex 
secant iteration in 2 used to satisfy (30). Results mainly using the nonstiff solver 
D02BBF are given in Table II. For large R,, (29) is stiff [13], as is clearly 
demonstrated by the fact that D02EBF becomes much more efficient. Corre- 
sponding to the last column of Table II, the Riccati method successfully solves the 
eigenvalue problems for R, = lOlo, IO”, and lo’* with normalized times as 
described below of 6.48, 9.10, and 9.13, respectively. 

After an accurate eigenvalue i * has been computed, the corresponding eigen- 
function y* can be found by solving [B,, + B,, R(O)] z(0) = 0 for a nonzero vector 

TABLE II 

Eigenvalue Calculations-Approach 1 

Continuous orthonormalization Riccati method 

R, Davey Meyer From t = 1 Fromr=O From I = 0 (stiff solver) 

IO4 10.22 6.09 2.58 2.87 4.21 

to5 14.63 8.32 4.32 1.62 6.96 

10” 40.78 11.29 5.46 6.83 1.51 

lo7 67.52 38.15 8.72 11.67 8.6X 

10R 12s 40.52 17.94 20.88 9.47 

10” 257.46 125.68 41.13 24.81 8.27 
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satisfying the normalization z,(O) = 1, and integrating the ODE z’ = [A,, + A,2R] z 
from t = 0 to t = 1. Then y* = [ ,“,I. From (25a), (28) the IVP for z is 

z,(O) = 1, z2(0) = 0, 

-I _ - 
-1-,-z 

z~=(b+aR,,)z,+aR,2Z~. 

For this return integration, we use a very crude implementation, roughly like that 
for continuous orthonormalization, viz., R,, and R,, and their derivatives obtained 
from (29) are stored at 1000 equally spaced interior points, and their cubic Hermite 
interpolants are then used when integrating (3 lb). For large Reynolds number, 
storing values of (h + aR,,) and interpolating them directly was found to be less 
prone to cancellation errors. For moderate values of R,, computer times are not 
markedly less than those for the continuous orthonormalization eigenfunction com- 
putations (though roughly 50% less than with Meyer’s method). For larger R,, 
adaptively choosing interior points to store R would improve matters significantly, 
since the solution to the stiffly stable IVP for R tends to exhibit layers only where 
the eigenfunction solutions do (e.g., see [14]). 

A summary of the numerical results for these IV methods using Approach 1 is 
given in Tables II and III. Tolerances in the IV codes were chosen such that 
roughly eight digit accuracy is obtained for the final eigenvalue and eigenfunctions. 
This requires a somewhat smaller tolerance for continuous orthonormalization than 
for Riccati, at least with the codes used. For example, a tolerance of lo-” is typi- 
cally required with continuous orthonormalization, but often only lo-” for Riccati. 
This is of course very code dependent, but slight changes in these tolerances do not 
qualitatively change the results. The numerical tests have been carried out on various 
machines (including runs on PCs with all of the methods), and those reported 
here are for double precision computations on an IBM 3081 and DEC 8650; 
unit roundoff for both is around lo- 15. The computer times have been normalized 
to correspond to the IBM CPU time in seconds (where the normalization factor is 

TABLE III 

Eigenfunction Calculations-Approach 1 

Continuous orthonormalization 

Riccati from t = 1, 

R, Davey Meyer nonstiff solver 

lo4 12.93 7.61 1.98 

10’ 17.19 11.13 4.67 

lo6 23.94 14.84 7.23 

10’ 41.60 25.12 11.76 

lo8 96.06 48.90 21.62 

lo9 Failed Failed 51.52 
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found by making identical runs on both computers). Of course, what is important 
here is the relative difference between the methods, as the implementations are far 
from polished but of roughly equal sophistication. 

All in all, the Riccati implementation is more efficient than continuous ortho- 
normalization, particularly for large Reynolds numbers. Moreover, convergence of 
Riccati is generally found to be less sensitive to the accuracy of the initial guess. In 
Table IV, the number of iterations and normalized CPU times needed for con- 
vergence of the iteration corresponding to the right hand column of Table II are 
shown. Riccati with Approach 1 is denoted by RICCI, and (i) and (ii) correspond 
to using one and two significant digits, respectively, for the initial eigenvalue 
approximations 2, and 2,. Note how computer time increases slowly for increasing 
R,, using’the stiff integrator D02EBF with a mixed error tolerance. 

We have not implemented any of the IV methods using Approach 2. In [ 151, 
trouble is reported with continuous orthonormalization due to degenerating 
accuracy when computing (orthogonal) r,(r) and using (lc), but we have not sub- 
stantiated this ourselves. On the basis of its superior performance here and in [22], 
we have modified the Riccati method, as described in Section 3, to be used with 
Approach 3. Recall that now an eigenvalue and an eigenvector approximation are 
computed at each iteration. To begin the iteration given only &, the initial eigen- 
function approximation y0 is computed by solving (29) for R and (31) for z; then 
y0 = [ ,“,I. As we expected, it is found to be more robust than Approach I, at least 
for moderate R,. Table IV shows the number of iterations required for convergence 
for R, between lo4 and 107, with RICC3 denoting this Approach 3 implementation 
and (i) and (ii) corresponding to initial guesses for i., with one and two significant 
digits, respectively. Computer times are not given, being unduly affected by the 
crude implementation of the eigenfunction computation. In fact, results for R, > 10’ 
are more erratic and probably unreliable as a test of the approach, apparently 

TABLE IV 

Riccati Eigenvalue Results for Various Initial Guesses 

R,. 

RICCI (i) RICCI (ii) RICC3 iterations 

Time Iterations Time Iterations (i) (ii) 

lo4 Diverges 6.28 6 5 4 

IO5 16.33 15 8.17 7 8 5 

10” 24.99 17 8.37 6 7 5 

10’ 16.26 IO 9.35 6 5 5 

IOX Diverges 10.02 6 

IO9 22.55 12 11.18 6 

IO”’ 11.44 6 12.79 6 

IO” Diverges 12.76 6 

10” 16.59 7 12.03 5 
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because the implementation prevents obtaining sufficiently accurate eigenfunction 
approximations, although this requires more study. 

The spline collocation code COLPAR is used with both Approaches 2 and 3 to 
solve the OrrSommerfeld equation. Because of its ability to handle high order 
ODES, the real and imaginary parts of (24a), (24b) are computed directly using 
two fourth-order ODES. For Approach 2, two trivial first-order ODES and BCs 
corresponding to the complex ODE j,’ = 0 and BC Q(0) = 1 are added. For 
Approach 3, the BC 4(O) = 1 is added to (24a), (24b), and COLPAR treats 1. 
directly as a parameter. 

COLPAR is essentially the fixed parameter version of the code COLCON [6], 
which does continuation in a single parameter. COLCON uses a GausssNewton 
iteration in solving the 

equations to (32) such that [,“:,I is made 
orthogonal to the null space of DF(z,, a,), and some theoretical justification for this 
choice is given. Not surprisingly, this approach can be interpreted in our setting in 
a natural way. All except the last equation of (11’) can be viewed as a condensed 
set of discretization equations (e.g., for collocation, as a condensation of (32)). For 
the block bidiagonal matrices of the type produced and solved by COLCON, full 
column pivoting in the last block insures that the parameters cci come into play so 
that one does not try to invert, in the notation of (II’), Q(A). Obviously, when a 
reliable explicit normalization (like (2%) appears to be) is unavailable, as would in 
general be the case, then a more careful choice like this used in COLCON is 
essential. 

For Approaches 2 and 3 we need an initial estimate i., for the eigenvalue and 
d,,(t) for the corresponding eigenfunction, and the approximations need to be 
accurate for the computed eigenvalue to be the desired one. One way to obtain such 
an accurate approximation is to use COLPAR with i, treated as a known constant 
and solve the standard linear BVODE (24a), (24b), with the BC 4”‘(O) = 0 replaced 
by d(O) = 1, for d,,(f). Thus the eigenvalue estimate is held constant and a 
reasonable approximation for the eigenfunction is obtained. If a tolerance TOL is 
desired on the final eigenvalue/eigenfunction (A*, d*), then the requested tolerance 
for &, is $l?%. Unless stated otherwise, a relative/absolute tolerance of 10 me 
is used for the components d and & the initial mesh is the default one of live 
equal spaced subintervals, and the spline basis with four collocation points per 
subinterval is used. 

The numerical results for COLPAR with Approach 2 are not markedly different 
than those with Approach 3, except that the former takes more computer time and 
storage, due to the larger ODE system. Table V shows, for COLPAR with 
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TABLE V 

Spline Collocation Results 

COLPAR COLCON 

R, Time Time Steps 

IO4 2.30 
105 3.80 87.34 14 

IOh 3.39 191.2 19 

10’ 4.07 288.5 24 

IOn 4.93 388.6 24 

IO9 4.57 369.2 29 

10” 5.42 

10” 5.57 

10L2 6.83 

Approach 2, the corresponding results to those in Tables II and III for the IV 
methods. Comparable results have been obtained with Approach 3, which is 
typically about 20% faster. The efficiency of the collocation method is apparent, 

especially since the computed solution, which increases slowly with R,, involves 
both the eigenvalue and eigenfunction computation. 

COLPAR is also extremely robust and provides reliable error estimates for the 

computed eigenpair. It converges to the smallest mode eigenvalue for R, = 
104, . . . . lo9 using an initial eigenvalue approximation with at least one significant 
digit. Given only the correct order of the smallest mode eigenvalue, it converges to 
it somewhat more reliably than RICC3, although the latter frequently still con- 
verges (but to another eigenvalue), making comparison slightly more delicate. 
While computer times are a measure of the efficiency of the codes, the considerable 
imbalance between the level of sophistication of COLPAR and the implementations 
of the IV methods makes comparison between these two types of methods 

problematic. It is exacerbated further because the IV methods choose a new mesh 
each (secant or Newton) iteration, while COLPAR uses a damped Newton 
iteration on a given mesh, and then adapts the mesh if necessary in an attempt to 
equidistribute the error. 

With this in mind, the iteration process for COLPAR for R, = lo4 and lo’, with 
A0 having two significant digits accuracy, is examined. We give (a) the number of 
mesh points used during the calculation of &,, followed by (b) the number of points 
in the mesh sequence chosen during the Newton iteration on oUi, 4,): 

R,,= 104. (a) 5, 10, 20; (b) 20, 16, 32 

R,= 10’. (a) 5, 10, 20, 16, 32, 16, 32, 16, 32, 64; (b) 64, 35, 70. 

Only one Newton iteration, perhaps with quasi-Newton iteration involving a fixed 
Jacobian, is done on all of the meshes except the first one in (b), where three and 
four iterations are done for R, = lo4 and lo’, respectively. Normalized times are 
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6.35 and 19.97 s, respectively. In general, since an accurate approximation to an 
eigenvalue may be unavailable, we may need to compute (say) the smallest mode 
eigenvalue for a range of values of R, (or a bifurcation analysis may be required). 
Then, instead of computing (I”*, d*) directly as above, it becomes necessary to use 
continuation. COLPAR is essentially the fixed parameter version of the code 
COLCON [6], which does continuation in a single parameter. 

Using the Reynolds number as the continuation parameter, we have solved (24) 
with COLCON for lo4 < R, < lo’“, and a selection of these results are shown in 
Table V. The computer times correspond to independent runs solving for R, = 
lop ---f lo”+‘, using the (automatically selected) number of continuation steps 
shown. COLCON is robust and reliable for this type of problem, although alter- 
native codes are available. For example, Ache [2] recently used the BVP code 
PASVAR and continuation to solve similar eigenvalue problems using Approach 2. 
Note from Table V that, despite the powerful adaptive mesh strategy and 
sophisticated technique for choosing the continuation step for COLCON, the com- 
puter time initially increases significantly with R,, and is fairly large as compared to 
that for COLPAR. This is because small changes in R, can still cause significant 
movement in the layer regions of the eigenfunction, so in addition to taking 
cautious initial continuation steps, relatively small steps are mandatory throughout. 
Also, keeping the number of mesh points (a major indicator of computer time) to 
a minimum is more difficult than when only solving for a single parameter value, 
as COLPAR does. 

N.B. For this particular problem, accurate approximations to I,* are readily 
obtained for large values of the Reynolds number because both Re(R,) and Im(R,) 
essentially vary linearly with log(R,). 

V. CONCLUSIONS 

The interrelationships between three natural approaches for solving the eigen- 
value problem (la), (1 b) have been shown. The technique of Keller, which involves 
enlarging the problem as a standard BVODE, has been interpreted in terms of a 
simplified strategy explicitly dealing with the eigenvalue A as a parameter (cf. 
Approach 3). We have considered, for various approaches, a spline collocation 
method and the Riccati and continuous orthonormalization methods. With these 
three methods, we have computed the eigenpair of lowest mode for the Orr- 
Sommerfeld equation for a wide range of values of the Reynolds number R,. The 
collocation method, having the generally most robust implementation, has been 
successfully used with relatively inaccurate initial approximations, while typically 
the IV methods needed more accurate approximations. The spectral method 
cheaply provides such initial approximations for small and moderate values of R,. 

The Riccati method performs best of the two IV methods. This is not to say that 
implementations of continuous orthonormalization cannot be made still more com- 
petitive, only that stability and practical implementation questions remain and that 
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the performance of our implementation of it was inferior to the corresponding one 
for the Riccati method. The potential for stiffness of the IVPs using continuous 
orthonormalization needs to be better understood, as the nonlinear equation (20b) 
appears considerably more difficult to handle for stiff methods like BDF than the 
quadratic nonlinearity of the Riccati method. While no reimbedding was necessary 
for the Riccati method for the Orr-Sommerfeld equation, for most problems a 
reimbedding strategy does not qualitatively affect the relative performance (see also 

C141). 
Conclusions about the methods considered here are far from being definitive, 

being of course based upon computations for the Orr-Sommerfeld equation. The 
implementations we use appear competitive with those used elsewhere for solving 
problems of the form (la), (lb), as to our knowledge the Orr-Sommerfeld problem 
has been solved here for larger Reynolds numbers than has been published 
heretofore. While the computations for extremely large R, are interesting in them- 
selves, a major use is to determine the relative robustness of the methods as a 
predictive measure of their utility in a variety of contexts. Navier-Stokes computa- 
tions for large R, are becoming increasingly important (e.g., see [lo] and, in a dif- 
ferent setting, [25]). We feel that the numerics here are indicative of the general 
picture as far as how the methods would perform for most difficult eigenvalue 
problems. 

Our comparison of the spline collocation and Riccati me/hods is at best rudimen- 
tary, but comparison of their implementntions is not-COLPAR wins hands down. 
It is highly sophisticated software using robust nonlinear iteration and mesh selec- 
tion strategies. For the Riccati implementation, we make use of the special form 
and properties of the Orr-Sommerfeld problem (for example, in the normalization 
and choice of variables, and in the explicit reduction of number of components of 
R needed), but the nonlinear iteration, mesh selection, and interpolation are 
extremely crude. These factors only partially compensate for each other, but in sum 
there is reason to hope that a competitive code based upon the Riccati method is 
feasible and should be developed. Nevertheless, consideration should be given to 
the presumed advantage of collocation in handling a high-order problem like (24) 
directly, as the problem of scaling variables when converting high-order ODES to 
first-order systems can need special care for any given problem. Questions such as 
the choice of nonlinear iteration scheme and the extra normalizing BC for the par- 
ticular methods would need to be examined. Finally, the computational experience 
with IV methods has emphasized the need for having IV codes with the facility for 
providing global error estimates and continuous solution profiles, aspects which 
have received recent, though somewhat belated, attention by IV code developers. 

One useful purpose of a robust implementation of an IV method like a Riccati 
method would be to supplement a collocation code like COLPAR. Reproducing 
numerical results with an entirely different code and method is a time-honoured 
way of assuring reasonable reliability of numerical results. But while it is undoub- 
tedly worthwhile to investigate other IV and global methods further, it is also 
manifestly clear that COLPAR has the capacity to solve very difficult problems. 
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Many of its adaptive features have been intensively developed and extensively tested 
on a wide assortment of problems. Its robustness should be better known, and 
more general use made of such software, particularly by the scientists and engineers 
whose interest is in the reliable solution to physical problems and not the computa- 
tion itself. 
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